شناسایی عابران پیاده توسط خودروهای خودران
پدال نیوز: محققان دانشگاه کالیفرنیا در ساندیگو یک سیستم شناسایی عابر پیاده طراحی کردهاند که به ادعای آنها بطور فوری و با دقت بسیار بالاتری از سیستمهای موجود عمل میکند.
به گزارش "پدال نیوز" به گزارش پدال نیوز به نقل از ایسنا، محققان بر این باورند که این الگوریتم و فناوری میتواند در خودروهای خودران، رباتیک و در سیستمهای جستوجوی تصویر و فیلم مورد استفاده قرار بگیرد.
این محققان مدلهای قدیمی نسخه رایانهای را با یادگیری عمیق ترکیب کردهاند تا دقت و سرعت الگوریتم را ارتقا بخشند.
هدف آنها ایجاد یک نسخه زمان واقعی بود که به سیستم اجازه شناسایی و دستهبندی اجسام و بویژه انسانها را در شرایط رانندگی عادی شهری میدهد. این امر به خودروهای خودران، رباتهای تحویلدهنده بار یا پهپادهای با ارتفاع پرواز پایین اجازه خواهد داد تا عابران پیاده و ازدحامها را شناسایی کرده و با آنها برخورد نکنند.
بیشتر سیستمهای شناسایی عابر پیاده، یک تصویر را به بخشهای کوچکتر تقسیم کرده که با یک برنامه گروهبندی برای تعیین حضور یک شکل انسانی پردازش میشوند. این کار میتواند برای مهندسان چالشبرانگیز باشد زیرا انسانها دارای اندازهها و شکلهای گوناگون هستند و فاصله باعث تغییر دورنما و اندازه اشیا میشود. در زمان استفاده فوری، این کار شامل پردازش میلیونها بخش در پنج الی 30 فریم در ثانیه است.
روش تشخیص آبشاری مورد استفاده در سیستم جدید همین عملکرد پایه را اعمال میکند اما این کار را بطور مرحلهای و نه یکجا انجام میدهد. این کار به الگوریتم اجازه میدهد تا به سرعت فریمهایی را که شباهتی به حضور یک شکل انسانی ندارند، کنار گذاشته و بر روی تصاویر محتملتر تمرکز کند.
مرحله اول بر روی آسمان و فضاهای خالی تمرکز دارد. مرحله دوم به طبقهبندی و کنار گذاشتن فریمهایی میپردازد که به شکل و رنگ انسان بوده اما عابر نیستند (مانند درختان، بوته و سایر خودروها). مرحله نهایی نیز با دقت و جزئیات بیشتر به طبقهبندی ادامه میدهد تا زمانی که تنها عابران پیاده باقی بمانند. اگرچه این محاسبات و پردازشهای نهایی بسیار سنگین هستند، اما تنها تعداد کمی از آنها مورد نیاز بوده و از این رو این فرآیند بسرعت انجام میشود.
بطور سنتی، سیستمهای شناسایی آبشاری از دستهبندی کنندههای سادهتر موسوم به " یادگیرندههای ضعیف" استفاده میکنند. در سیستم جدید، سیستمهای شناسایی مرحله بعد همزمان با اجرا به یادگیری میپردازند و در نتیجه، دستهبندی کنندهها پیچیدهتر و سریعتر میشوند. دستهبندی کنندهها با گذشته زمان در هر مرحله بیشتر تقویت میشوند و در هر محله تغییر میکنند. این مهمترین تفاوت میان االگوریتم جدید و سیستمهای رایج شناسایی عابر پیاده است.
الگوریتم این کار را با یادگیری اینکه کدام ترکیب از یادگیرندههای ضعیف توانسته بودند عابران را در یک فریم تشخیص دهند، انجام داده و با ارتقای فریمها، بر روی آنها بیشتر تاکید میکند و فرآیند شناسایی را سرعت میبخشد.
این محققان مدلهای قدیمی نسخه رایانهای را با یادگیری عمیق ترکیب کردهاند تا دقت و سرعت الگوریتم را ارتقا بخشند.
هدف آنها ایجاد یک نسخه زمان واقعی بود که به سیستم اجازه شناسایی و دستهبندی اجسام و بویژه انسانها را در شرایط رانندگی عادی شهری میدهد. این امر به خودروهای خودران، رباتهای تحویلدهنده بار یا پهپادهای با ارتفاع پرواز پایین اجازه خواهد داد تا عابران پیاده و ازدحامها را شناسایی کرده و با آنها برخورد نکنند.
بیشتر سیستمهای شناسایی عابر پیاده، یک تصویر را به بخشهای کوچکتر تقسیم کرده که با یک برنامه گروهبندی برای تعیین حضور یک شکل انسانی پردازش میشوند. این کار میتواند برای مهندسان چالشبرانگیز باشد زیرا انسانها دارای اندازهها و شکلهای گوناگون هستند و فاصله باعث تغییر دورنما و اندازه اشیا میشود. در زمان استفاده فوری، این کار شامل پردازش میلیونها بخش در پنج الی 30 فریم در ثانیه است.
روش تشخیص آبشاری مورد استفاده در سیستم جدید همین عملکرد پایه را اعمال میکند اما این کار را بطور مرحلهای و نه یکجا انجام میدهد. این کار به الگوریتم اجازه میدهد تا به سرعت فریمهایی را که شباهتی به حضور یک شکل انسانی ندارند، کنار گذاشته و بر روی تصاویر محتملتر تمرکز کند.
مرحله اول بر روی آسمان و فضاهای خالی تمرکز دارد. مرحله دوم به طبقهبندی و کنار گذاشتن فریمهایی میپردازد که به شکل و رنگ انسان بوده اما عابر نیستند (مانند درختان، بوته و سایر خودروها). مرحله نهایی نیز با دقت و جزئیات بیشتر به طبقهبندی ادامه میدهد تا زمانی که تنها عابران پیاده باقی بمانند. اگرچه این محاسبات و پردازشهای نهایی بسیار سنگین هستند، اما تنها تعداد کمی از آنها مورد نیاز بوده و از این رو این فرآیند بسرعت انجام میشود.
بطور سنتی، سیستمهای شناسایی آبشاری از دستهبندی کنندههای سادهتر موسوم به " یادگیرندههای ضعیف" استفاده میکنند. در سیستم جدید، سیستمهای شناسایی مرحله بعد همزمان با اجرا به یادگیری میپردازند و در نتیجه، دستهبندی کنندهها پیچیدهتر و سریعتر میشوند. دستهبندی کنندهها با گذشته زمان در هر مرحله بیشتر تقویت میشوند و در هر محله تغییر میکنند. این مهمترین تفاوت میان االگوریتم جدید و سیستمهای رایج شناسایی عابر پیاده است.
الگوریتم این کار را با یادگیری اینکه کدام ترکیب از یادگیرندههای ضعیف توانسته بودند عابران را در یک فریم تشخیص دهند، انجام داده و با ارتقای فریمها، بر روی آنها بیشتر تاکید میکند و فرآیند شناسایی را سرعت میبخشد.
گزارش خطا
پسندها: 0
ارسال نظر
آخرین اخبار
سازمان حمایت مخالف قیمت گذاری دستوری است فروش تسلا به حالت تعلیق درآمد؟ بازدهی ۱۳درصدی بازار خودرو چند دستگاه خودرو وارد شد؟ پایان سرخوشی خودروهای برقی آغاز اولین مرحله شرایط فروش خودروی ۲۱۲ موسو گرند خان تکمیل ظرفیت شد صدور دعوتنامههای AVENTRA U75 Plus رکود خودرو زیر سایه کمبود مواد اولیه هجوم ۶.۸ میلیونی به قرعه کشی ایران خودرو بدعتی تازه در تعیین قیمت خودرو افتتاح خط تولید موتور TGDI در کرمان موتور هشدار نسبت به تعمیق بحران خودرو توضیحات راسا موتور درباره فراخوان بنزهای برقی مونتاژی فروش BMW 225 L M Sport پرشیا خودرو آغاز شد سندروم اعلام قیمت خودرو افت تولید خودروهای تجاری اعلام سازوکار قانونی نظارت بر پیش فروش خودرو ریاضت مالی فولکس واگن پشت پرده چراغ سبزهای پنهان به ایران خودرو تعرفه واردات خودرو ۱۴۰۵ آپدیت شد تصمیم مجلس برای تخصیص ارز خودرو در سال ۱۴۰۵ افول تب برقیها فرمول مجلس برای ورود خودروهای خارجی تقابل دوباره بر سر اعلام قیمت خودرو رونمایی از نسخه برقی شاسی بلند محبوب تویوتا سازمان حمایت مسؤول قیمت گذاری خودرو است ضرب الاجل کارت سوختی برای مالکان چند خودرو چرا رانت خودرو با افزایش قیمت مهار نشد؟ اخذ مالیات از لوکس سواران ۵۰ هزار دستگاه تعهد معوق خودروسازان واردات خودرو به روسیه با دورزدن تحریمها سه مدل بنز توسط راسا موتور وارد ایران می شود +*کاتالوگ استقبال چشمگیر از فروش مرحله دوم UNI-T آرینا درایو ابلاغ قیمت جدید خودروسازان آخرین جزئیات از واگذاری سایپا تعیین زمان اجرای استانداردهای 122 گانه کی ام سی شدو، نخستین هاچ بک ملی کرمان موتور رونمایی شد ویژگیهای مثبت ترا پرشیا خودرو؛ گزینهای قابل اعتماد آخرین شرایط فروش موسو گرند Q300 آغاز شد
شرایط فروش