شناسایی عابران پیاده توسط خودروهای خودران
پدال نیوز: محققان دانشگاه کالیفرنیا در ساندیگو یک سیستم شناسایی عابر پیاده طراحی کردهاند که به ادعای آنها بطور فوری و با دقت بسیار بالاتری از سیستمهای موجود عمل میکند.
به گزارش "پدال نیوز" به گزارش پدال نیوز به نقل از ایسنا، محققان بر این باورند که این الگوریتم و فناوری میتواند در خودروهای خودران، رباتیک و در سیستمهای جستوجوی تصویر و فیلم مورد استفاده قرار بگیرد.
این محققان مدلهای قدیمی نسخه رایانهای را با یادگیری عمیق ترکیب کردهاند تا دقت و سرعت الگوریتم را ارتقا بخشند.
هدف آنها ایجاد یک نسخه زمان واقعی بود که به سیستم اجازه شناسایی و دستهبندی اجسام و بویژه انسانها را در شرایط رانندگی عادی شهری میدهد. این امر به خودروهای خودران، رباتهای تحویلدهنده بار یا پهپادهای با ارتفاع پرواز پایین اجازه خواهد داد تا عابران پیاده و ازدحامها را شناسایی کرده و با آنها برخورد نکنند.
بیشتر سیستمهای شناسایی عابر پیاده، یک تصویر را به بخشهای کوچکتر تقسیم کرده که با یک برنامه گروهبندی برای تعیین حضور یک شکل انسانی پردازش میشوند. این کار میتواند برای مهندسان چالشبرانگیز باشد زیرا انسانها دارای اندازهها و شکلهای گوناگون هستند و فاصله باعث تغییر دورنما و اندازه اشیا میشود. در زمان استفاده فوری، این کار شامل پردازش میلیونها بخش در پنج الی 30 فریم در ثانیه است.
روش تشخیص آبشاری مورد استفاده در سیستم جدید همین عملکرد پایه را اعمال میکند اما این کار را بطور مرحلهای و نه یکجا انجام میدهد. این کار به الگوریتم اجازه میدهد تا به سرعت فریمهایی را که شباهتی به حضور یک شکل انسانی ندارند، کنار گذاشته و بر روی تصاویر محتملتر تمرکز کند.
مرحله اول بر روی آسمان و فضاهای خالی تمرکز دارد. مرحله دوم به طبقهبندی و کنار گذاشتن فریمهایی میپردازد که به شکل و رنگ انسان بوده اما عابر نیستند (مانند درختان، بوته و سایر خودروها). مرحله نهایی نیز با دقت و جزئیات بیشتر به طبقهبندی ادامه میدهد تا زمانی که تنها عابران پیاده باقی بمانند. اگرچه این محاسبات و پردازشهای نهایی بسیار سنگین هستند، اما تنها تعداد کمی از آنها مورد نیاز بوده و از این رو این فرآیند بسرعت انجام میشود.
بطور سنتی، سیستمهای شناسایی آبشاری از دستهبندی کنندههای سادهتر موسوم به " یادگیرندههای ضعیف" استفاده میکنند. در سیستم جدید، سیستمهای شناسایی مرحله بعد همزمان با اجرا به یادگیری میپردازند و در نتیجه، دستهبندی کنندهها پیچیدهتر و سریعتر میشوند. دستهبندی کنندهها با گذشته زمان در هر مرحله بیشتر تقویت میشوند و در هر محله تغییر میکنند. این مهمترین تفاوت میان االگوریتم جدید و سیستمهای رایج شناسایی عابر پیاده است.
الگوریتم این کار را با یادگیری اینکه کدام ترکیب از یادگیرندههای ضعیف توانسته بودند عابران را در یک فریم تشخیص دهند، انجام داده و با ارتقای فریمها، بر روی آنها بیشتر تاکید میکند و فرآیند شناسایی را سرعت میبخشد.
این محققان مدلهای قدیمی نسخه رایانهای را با یادگیری عمیق ترکیب کردهاند تا دقت و سرعت الگوریتم را ارتقا بخشند.
هدف آنها ایجاد یک نسخه زمان واقعی بود که به سیستم اجازه شناسایی و دستهبندی اجسام و بویژه انسانها را در شرایط رانندگی عادی شهری میدهد. این امر به خودروهای خودران، رباتهای تحویلدهنده بار یا پهپادهای با ارتفاع پرواز پایین اجازه خواهد داد تا عابران پیاده و ازدحامها را شناسایی کرده و با آنها برخورد نکنند.
بیشتر سیستمهای شناسایی عابر پیاده، یک تصویر را به بخشهای کوچکتر تقسیم کرده که با یک برنامه گروهبندی برای تعیین حضور یک شکل انسانی پردازش میشوند. این کار میتواند برای مهندسان چالشبرانگیز باشد زیرا انسانها دارای اندازهها و شکلهای گوناگون هستند و فاصله باعث تغییر دورنما و اندازه اشیا میشود. در زمان استفاده فوری، این کار شامل پردازش میلیونها بخش در پنج الی 30 فریم در ثانیه است.
روش تشخیص آبشاری مورد استفاده در سیستم جدید همین عملکرد پایه را اعمال میکند اما این کار را بطور مرحلهای و نه یکجا انجام میدهد. این کار به الگوریتم اجازه میدهد تا به سرعت فریمهایی را که شباهتی به حضور یک شکل انسانی ندارند، کنار گذاشته و بر روی تصاویر محتملتر تمرکز کند.
مرحله اول بر روی آسمان و فضاهای خالی تمرکز دارد. مرحله دوم به طبقهبندی و کنار گذاشتن فریمهایی میپردازد که به شکل و رنگ انسان بوده اما عابر نیستند (مانند درختان، بوته و سایر خودروها). مرحله نهایی نیز با دقت و جزئیات بیشتر به طبقهبندی ادامه میدهد تا زمانی که تنها عابران پیاده باقی بمانند. اگرچه این محاسبات و پردازشهای نهایی بسیار سنگین هستند، اما تنها تعداد کمی از آنها مورد نیاز بوده و از این رو این فرآیند بسرعت انجام میشود.
بطور سنتی، سیستمهای شناسایی آبشاری از دستهبندی کنندههای سادهتر موسوم به " یادگیرندههای ضعیف" استفاده میکنند. در سیستم جدید، سیستمهای شناسایی مرحله بعد همزمان با اجرا به یادگیری میپردازند و در نتیجه، دستهبندی کنندهها پیچیدهتر و سریعتر میشوند. دستهبندی کنندهها با گذشته زمان در هر مرحله بیشتر تقویت میشوند و در هر محله تغییر میکنند. این مهمترین تفاوت میان االگوریتم جدید و سیستمهای رایج شناسایی عابر پیاده است.
الگوریتم این کار را با یادگیری اینکه کدام ترکیب از یادگیرندههای ضعیف توانسته بودند عابران را در یک فریم تشخیص دهند، انجام داده و با ارتقای فریمها، بر روی آنها بیشتر تاکید میکند و فرآیند شناسایی را سرعت میبخشد.
گزارش خطا
پسندها: 0
ارسال نظر
آخرین اخبار
قطعه سازی در رکود کف قیمت بازار خودرو به ۷۰۰میلیون رسید خودروسازی سنتی اروپا دربرابر انقلاب برقی اجرای قانون واردات؛ راهکار ساماندهی بازار خودرو جایگزینی ۵۳ هزار وسیله نقلیه فرسوده وضعیت جدید واردات خودرو توسط ایرانیان خارج از کشور اخذ مجوز محیط زیست برای واردات الزامی شد آپشنبازی در واردات خودرو انتظار برای قیمتهای جدید خودرو بازار خودروهای بنزینی داغ شد همکاری فورد و رنو ادامه فعالیتهای خیریه برند ام وی ام، این بار با اقدامی متفاوت به مناسبت روز مادر بازدید مدیر عامل کرمان موتور از سدان هیبرید ملی ایگل کاتالوگ ایگل هیبرید کرمان موتور منتشر شد +مشخصات «نه» بانکها به قطعه سازان حذف سهمیه بنزین هم ترمز تقاضا را نکشید درخواست ۲۰هزار نفر برای جایگزینی موتورسیکلت دنده عقب سرمایه گذاری فولکس واگن تا ۲۰۳۰ چرا ترمز برقیها کشیده شد؟ مونتاژیها روی ریل افزایش قیمت مجوز ورود ۵۰ خودروی خارجی به ناوگان وزارت خارجه احتمال حذف تعرفه خودروهای چینی فولکس واگن عرضه تسلای ارزانقیمت در اروپا KMC Eagle اولین سدان هیبرید ملی در یک قدمی بازار چرا چینی ها در خودروسازی ایران سرمایه گذاری نمی کنند؟ کاهش شتاب تورم خودرو در بازار توضیح سازمان حمایت در مورد قیمت گذاری مونتاژیها بانک ها «مکلف» به پرداخت تسهیلات خودروسازان نشدهاند چرخش استلانتیس به سمت هیبریدیها التهابات قیمتی بازار خودرو کاهش فروش خودروهای برقی در آمریکا تشکیل کمیتههای تخصصی برای بهبود کیفیت خودرو هجوم خودروهای مازاد چین به بازارهای نوظهور ورودی خودروها ۶ برابر خروجی فرسودهها
شرایط فروش
پربازدیدترینها
پربحثترینها
بازدید مدیر عامل کرمان موتور از سدان هیبرید ملی ایگل ادامه فعالیتهای خیریه برند ام وی ام، این بار با اقدامی متفاوت به مناسبت روز مادر بازار خودروهای بنزینی داغ شد همکاری فورد و رنو انتظار برای قیمتهای جدید خودرو آپشنبازی در واردات خودرو اخذ مجوز محیط زیست برای واردات الزامی شد وضعیت جدید واردات خودرو توسط ایرانیان خارج از کشور جایگزینی ۵۳ هزار وسیله نقلیه فرسوده خودروسازی سنتی اروپا دربرابر انقلاب برقی کف قیمت بازار خودرو به ۷۰۰میلیون رسید قطعه سازی در رکود اجرای قانون واردات؛ راهکار ساماندهی بازار خودرو